Fri frakt over 399 kr
Fri frakt over 399 kr
Kundeservice
Mathematics for Machine Learning

Mathematics for Machine Learning

628 kr

628 kr

På lager

On., 12 feb. - ti., 18 feb.


Sikker betaling

14 dagers åpent kjøp


Selges og leveres av

Adlibris


Produktbeskrivelse

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Artikkel nr.

c171d3f0-7771-43b5-82d7-5153d97c3dae

Egenskaper

Modell/Type

Papirbok

Sjanger

Pedagogisk

Språkversjon

Engelsk

Bokomslagstype

Heftet

Antall sider

398 sider

Skrevet av

A. Aldo FaisalCheng Soon Ong

Utgiver

Cambridge University Press

Utgivelsesdato (DD/MM/ÅÅÅÅ)

01/01/2020

International Standard Book Number (ISBN)

9781108455145

Vekt og dimensjoner

Bredde

253 mm

Høyde

177 mm

Mathematics for Machine Learning

628 kr

628 kr

På lager

On., 12 feb. - ti., 18 feb.


Sikker betaling

14 dagers åpent kjøp


Selges og leveres av

Adlibris