Winter deals - Siste sjanse!

Winter deals - Siste sjanse!

Fri frakt over 399 kr
Fri frakt over 399 kr
Kundeservice
Handbook of HydroInformatics

Handbook of HydroInformatics

1 870 kr

1 870 kr

På lager

On., 22 jan. - ti., 28 jan.


Sikker betaling

14 dagers åpent kjøp


Selges og leveres av

Adlibris


Produktbeskrivelse

Advanced Machine Learning Techniques includes the theoretical foundations of modern machine learning, as well as advanced methods and frameworks used in modern machine learning. Handbook of HydroInformatics, Volume II: Advanced Machine Learning Techniques presents both the art of designing good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees. The global contributors cover theoretical foundational topics such as computational and statistical convergence rates, minimax estimation, and concentration of measure as well as advanced machine learning methods, such as nonparametric density estimation, nonparametric regression, and Bayesian estimation; additionally, advanced frameworks such as privacy, causality, and stochastic learning algorithms are also included. Lastly, the volume presents Cloud and Cluster Computing, Data Fusion Techniques, Empirical Orthogonal Functions and Teleconnection, Internet of Things, Kernel-Based Modeling, Large Eddy Simulation, Patter Recognition, Uncertainty-Based Resiliency Evaluation, and Volume-Based Inverse Mode.   This is an interdisciplinary book, and the audience includes postgraduates and early-career researchers interested in:  Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, Chemical Engineering.

Artikkel nr.

7b0c0b63-9a10-40cd-9f84-3b85618d7fd8

Handbook of HydroInformatics

1 870 kr

1 870 kr

På lager

On., 22 jan. - ti., 28 jan.


Sikker betaling

14 dagers åpent kjøp


Selges og leveres av

Adlibris